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Abstract. The internal friction in the high-T, superconductor YBa,Cu,07-b arising from the 
diffusion of oxygen atoms between the 0(1) and O(5) sites under the influence of a periodic 
mechanical strain is studied microscopically in the linear approximation of the relaxation 
process. It is analysed for various specific cases in both the tetragonal and the orthorhombic 
phases as well as in the case of polycrystalline samples. 

1. Introduction 

Owing to its extraordinarily high critical temperature, the ceramic superconductor 
YBa2Cu307+ has excited immense research interest by its discovery at the beginning 
of 1987 (for review articles, see Wolf and Kresin (1987)). It is now well established that 
the material undergoes a phase transition from a structure with tetragonal symmetry 
to a structure with orthorhombic symmetry at about 500°C (see, e.g., Bell 1988). 
Superconductivity occurs only in the orthorhombic phase. There are two sets of Cu-0 
pianes in the crystalline structure of YBa2C~307-6, namely one with barium atoms on 
both sides of each plane and the other with barium and yttrium atoms separately on the 
two sides of each plane. In each of the first kind of Cu-0 plane the oxygen sites (figure 
1) are'only partially occupied at a concentration depending upon 6.  The structure phase 
transition is associated with an ordering process of oxygen atoms. In the tetragonal phase 
the 0(1) and O(5) sites (figure 1) have equal occupancies, whereas in the orthorhombic 
phase the O( 1) sites are preferentially occupied forming Cu-0 chains along the b axis 
(see, e.g., Cava etall987). 

Under strained conditions, as illustrated in figure 2, diffusion of oxygen atoms from 
0(1) to O(5) sites or vice versa will be induced. When a sample is under the action of a 
time-varying stress generated, for instance, by an acoustic wave, the relaxation process 
of atomic diffusion causes energy dissipation which attains a maximum at a certain 
resonanting frequency. Our aim in this article is to study such an effect of internal friction 
in the superconductor YBa2C~307-6. We formulate the problem in section 2 and discuss 
various specific cases in section 3. A theory of linear relaxation processes is presented 
in the appendix. 
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Figure 1. The Cu-O(l), O(5) plane in Figure 2. Compression-induced hoppings of oxy- 
YBa2Cu30,-,. gen atoms between 0(1) and O(5) sites. 

2. The internal friction in YBa2Cu30,-s 

We discuss a system which is describable in terms of two independent thermodynamic 
coordinates x1 and x 2 ,  with corresponding thermodynamic forces 

fi = - d Q / d X i  i =  1,2  (1) 
S2 being the thermodynamic potential. Consider the case in which one of the f-values 
(sayfl) deviates sinusoidally under external influences at a circular frequency w from its 
equilibrium value. Dissipations occur owing to associated irreversible processes inside 
the system. We assume that the respective relaxation times ti, i = 1,2,  of f l  and f2 
towards equilibrium differ by orders of magnitude, such that t2 tl. The linear theory 
of relaxation processes (Cheng 1955) (we refer readers to the appendix, since this paper 
is difficult to obtain) then implies that the dissipation is given by 

Q - l  = [wt/(l + ~~t~)I(M12M21/MiiM22) (2) 
where w is the resonanting frequency of peak dissipation and the M are the following 
‘moduli’: 

Mi, = - [d2SZ/(dxi d x ~ ) l ~ e q u i l i b r i u ~  i ,  j = 1,2. (3) 
In the case when fl is the mechanical stress, equation (2) gives the internal friction 
associated with an acoustic wave of frequency w .  

In order to evaluate the internal friction in YBa2Cu307-6 due to diffusion of oxygen 
atoms between the 0(1) and O(5) sites, we need to find the moduli in this case. Let N I ,  
=Nand N5 denote respectively the number of occupied O(1) and O(5) sites in Cu-O( l), 
O(5) plane. In terms of the ordering parameter S, they are 

NI = N = CNT(l + S)/2 N5 = CNT(1 - S)/2 = C N T  - N (4) 
where NT is the total number of oxygen sites in a Cu-O(l), O(5) plane, and c = (1 - 6)/2 
is the oxygen concentration in this plane. The thermodynamic coordinates in the present 
case are then the mechanical strain E and the number N .  Since the diffusion of oxygen 
atoms is much slower than mechanical relaxation, equation (2) is valid. 

The problem now is to find the thermodynamic potential S2 of a strained sample. Let 
P be the nearest-neighbour pairs of oxygen atoms in the Cu-O( 1), O(5) plane and w the 
interaction energy between the two members in each pair, the total energy of the system 
is, then, when E = 0, 

U = U0 + N / A b  + (cNT - N ) p a  + Pw (5) 
U, being the energy with all 0(1) and O(5) sites vacant and pa and p b  the energies of 
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interaction of a single O(1) and O(5) atom, respectively, with the lattice while all the 
other O( 1) and O(5) sites vacant. The latter can be obtained by evaluating the following 
lattice sums over a single two-dimensional Cu lattice in the same plane of the oxygen 
atom: 

where, as usual, m = 12 and n = 6, and we take into account only interactions within a 
single Cu-O(l), 0 1 5 )  plane, since Y B a 2 C ~ 3 0 7 - 6  has a layered structure with weak 
inter-layer coupling. When the sample is under strain, there is an additional energy 

AU = Yc2/2 + N(hph - Apa) + CN Ay, (7) 
with Y the appropriate elastic modulus and Apa and Aph the accompanying changes in 
pa and &, respectively, when E = 0. The thermodynamic potential is thus given by 

S2 = -kgTlng  + U + AU (8) 
where, in the quasi-chemical approximation (Toshinosuke and Yotaka 1955), 

g = [(N,/2)!(NT/2)!P,!(4N - Po)!(4cNT - 4N - Po)!(2NT - 4cNT + PO)!] 

x [N!(NT/2 - N)!(cNT - N)!(N,/2 - CNT + N)!P! 

x (4N - P)!(4cNT - 4N - P)!(2NT - 4cNT f P)!]-’ (9) 
with Po = 8N(cNT - N)/NT. The paring parameter P introduced in equation ( 5 )  is fixed 
by requiring S2 to attain a minimum value a S 2 / d P l p = p  = 0, implying that 

P = 4c2(1 - S2)N, / [E  + 2 4 1  - lj) - 171 (10) 

E = exp(w/k, T )  (11) 
17 = { [ E  + 2 4 1  - E ) ]  - 4c2(1 - 5)(1 - S2)}”’.  (12) 

Equation (10) constitutes, in fact, an implicit equation defining I‘. The effect of the strain 
on P i s  also implicitly implied. We have therefore, 

&(C, NT, N ,  E ,  T )  = - k g T h g ( c ,  NT, N ,  P )  + N p b ( E  = 0)  (CNT - N)p,(& = 0 )  

f N(Apb - Apa) CNT P W  f YE2/2. (13) 
Let E , ,  &b and E ,  be the dilatations along the crystal axes a, b and c ,  respectively, and 

I) the deviation from n/2 of the angle between the crystal axes under shear; one has, for 
example, in the strained state 

a 

p h ( &  = 0 )  = {v[r2a2 + (s + 4)2b2]-m/2  - v[r2a2 + (s + $ ) 2 b 2 ] - n / 2 }  
y , s =  -x  

X 

- {mv[r2a2 + (s + 4)2b’] - (m+2) /2  - nv’[r2u’ + (s + 4 ) 2 ~ 1 + + 2 ) / 2 }  
y , s =  -02 

x [ r2a2&,  + (s + $)2b2&b + r(s + I )abv]  
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so that 

A,Ub - Apa = 

00 

{ (A, ,  - A;,)[(Y + $ ) 2 ~ 2 ~ a  + s2b2&b + (Y + i)sabq] 
,,s= --o 

- ( B y ,  - B;,)[r2aZE, + (s + & ) W E b  + Y(S + t)abq]} (14) 
where 

A,, = mv[( r  + i ) 2 a 2  + s2b2]- (m+2) /2  B,, = mv[r2a2 + (s + g)262]-(m+2)/2 

Ais = nv’[(r + 2)2a2 + ~ ~ b ~ ] - ( ~ + ~ ) / ~  B;, = nv’[r2a2 + (s + 4 ) 2 b 2 ] - ( n + 2 ) / 2 ,  

We are thus provided with everything necessary to evaluate the internal friction. 
Basically, to determine the oxygen site energies pa and ,ub, one needs to resort to 

band calculations. Once pa and ,ub have been found as functions of parameters of the 
two-dimensional Cu lattice, Apb - Apa results immediately by direct differentiation. 
Here we adopt, however, an alternative phenomenological description by considering 
pa and p b  to result from an equivalent lattice sum of interactions between an 0 atom and 
the Cu atoms, the latter being described by means of Lenard-Jones-like potentials as in 
equation (6). 

(15) 

3. Discussion of specific cases 

Since our relevant thermodynamic coordinates are E and N ,  the ‘moduli’ which we need 
are 

M E ,  = -d2Q/de2 MEN = MN, = -d2Q/(d& dNj M N N  = - d 2 ! 2 / 8 N 2 .  (16) 

It follows immediately that 

M,, = -Y (17) 
M” = -(4kBT/NT)[3(d2 + c - l)/c(l - S2)[(1 - c’) - c2S2] + F1 + F2 + F3 

+ F ~ { w / ~ ~ T  - ln[4c2(1 - s2)  - 4cf‘ + 2(]/[4c2(1 - S 2 )  - 4cC + t2]}j 
(18) 

where 

F1 = 16S2[(1 - 2c)C + 4c2(1 - S2)][2c2(1 - f ) (1  - S 2 )  

- tq12/(1 - s~)[(I  - 245; + 2 2 ( 1 -  s 2 ) 1 ~ 3 ~ 2  

F2 = 2[5;’7 - 8c3S(1 - S2)(1 - 5 )  + 4~SCq]~ /c ( l  + S) [ (  - 2c(l - S)]C3q2 (18’) 
F3 = 2[C2q + 8c3S(1 - S2)(1 - f )  - 4 ~ S < q ] ~ / c ( l  - S)[C - 2 4 1  + S)]C3q2 

F4 = (8/C3q3)[2c2(1 - f ) ( l  - S 2 ) C q 2  - g2q3 + 8c4(1 - g)2S2(1 - S2)(2q - C)] 

with 

t = 5 + 2 4 1  - f )  - q. (19) 
For the evaluation of M E N ,  we need to discuss separately the specific cases. 
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3.1. Orthorhombic phase 

Consider first the case of a sample in the orthorhombic phase. The O(1) and O(5) sites 
are unequally occupied, so that S # 0. 

When the acoustic stress is a tension along the a axis, 

(20) 
E ,  = E &b = [ ( c13c23  - c12c33)/(c22c33 - G 3 ) I E  

Ec = [(c12c23 - c13c22)/(c22c33 - ci3)]& q = O  
C,, a, p = 1, . . . , 6  being the components of the elastic modulus tensor. Accordingly, 

M~~ = -c11 - (2c12c23c13 - c:2c33 - c:3c22)/(c22c33 - cZ3) 

MEN = - c13c23 - c12c33 b2 
[(A,, - AC,)s2 - (BYs - B$,)(s + 6 ) 2 ]  

c22c33 - c:3 7,s 

- a2 [(A,, - A;,)(r + - (By, - B;,)r2]. (22) 
Y 9s 

We remark that, since E is assumed to originate only from the acoustic wave, the indirect 
contribution to MENthrough the implicit dependence of Pon E vanishes when we evaluate 

MEN = -[a2Q/(a& a N I I e q u i l i b r i u m .  

When the acoustic stress is a tension along the b axis, 

E a  = [ ( c13c23  - c12c33)/(c11c33 - CL>I& &b = E 

E C  = [(c12c13 - c11c23)/(c11c33 - CL)IE 3 = 0. 
In this case, 

MEE = -c22 - (2c12c13c23 - C?2C33 - ~ 1 1 c ~ 3 ) / ( c 1 1 c 3 3  - c:3> 

a* [(A,, - A;,)(r  + t)2 - (By, - B;,)r2]. (25) 
- c13c33 - c12c33 

c11c33 - c:3 7 , s  

When the acoustic stress is a tension along the c axis, 

(26) 
& a  = [(C1Zc23 - c13c22)/(c11c22 - c!2)1E 

&b = [(c12c13 - c11c23)/(c11c22 - C?2)1E 

ME, = - c 3 3  - (2c12c13c23 - cllc43 - c22c?3)/(c11c22 - c!2) 

E ,  = E V = O  
and 

(27) 

When the stress is a shear in the ac or bc plane, 
&a = &b = E ,  = 0 

ME, (V = E m )  = -C55 

?) = E, ,  or &bc.  (29) 

(30) 

Hence 

or M ~ ~ ( v  = E b c )  = - c 4 4  

and, in either case, 
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When the stress is a shear in the ab plane, MEN = 0, where the change in w has been 
included in the appropriate elastic modulus. 

3.2. Tetragonal phase 

Next, in a case of a sample in the tetragonal phase, the 0(1) and O(5) sites are equally 
occupied, so that S = 0. Furthermore, in the tetragonal phase, 

a = b  c11 = c22 c13 = c 2 3 .  (32) 
It follows that A ys = B,, Abs = Bbs. Equation (18) reduces to 

MNN = -(4kB T / N T ) I I ( ~ / ~ ~ v > [ ~ c ' ( ~  - E )  - C~l{w/kB T 
+ ln(4c2 - ~ C C  + 2t)/(4c2 - 4cf + t2)]} + 45'/c(t - 2 ~ )  - 3/c(l - c) ] .  

(33) 

(34) 

When the stress is a tension along either the a or the b axis, we have 

M E ,  = -c11 - (2c12c?3 - c?2c33 - c?3Cll)/(c 1lC23 - c:3) 

From equations (28) and (31), we conclude that, when the stress is either a tension along 
the c axis or a shear in the ac or bc plane, MEN = 0, and no internal friction exists. This, 
of course, is trivial physically. 

3.3. Polycrystalline sample 

Let us now discuss lastly the case of a polycrystalline sample. In this case we need to 
average over crystal orientations. When a single microcrystal experiences a stress in the 
direction which forms a polar angle 8 with the c axis and an azimuthal angle 47 with the 
a axis, 

E, = (Dll sin 8 cos rp + D12 sin 8 sin rp + Dl3 cos 8)a 

& b  = (D21 sin @cos rp + DZ2 sin 8sin cp + 0 2 3  cos 8)a 

where (D,& = (Cap)-' and the K-values are constants that measure the degree of trans- 
mitting a into shearing stresses. They depend upon the surface conditions of the micro- 
crystal. In this case, one does not have a single principal strain E, and we need to 
change our choice of variables to a and N .  The thermodynamic potential is accordingly 
considered as Sn = Q(c, NT,  N ,  a, T )  with a replacing E. It can be verified by following 
the formalism in the appendix that this change in variable does not affect the basic 
formula, equation (2), where we now understand that x1 = 0 and x 2  = N .  
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The elastic energy of the system under the action of the stress is 

W = 1 e D' e' (37) 

e = ( & a  7 & b  7 3 &bc , 7 & u b )  (38) 

where 2 is the one-row matrix 

D denotes the matrix of tensor D and the superscript T implies the transposed matrix. 
Thus 

M u ,  = -(a*s2/a(r2)Ia=o = -A D A I  (39) 

where 

A = [sin 8 cos cp , sin e sin cp, cos e, K(sin e sin cp + cos e), 
K(sin 6 cos cp + cos e ) ,  K sin 8 (sin cp + cos cp)]. (40) 

Substitution of equation (37) with q!~ = &bc + E,, in equation (14) yields A p b  - A p a  as a 
function of U, so that 

Finally, an average over the angles 8 and cp gives us the internal friction of a poly- 
crystalline sample: 

We remark that, in the case of polycrystalline samples, the internal friction discussed 
here is, quite possibly, mixed and being masked by friction due to other causes such as 
grain boundaries. 

It is interesting to see, by the above analysis, that the internal friction due to diffusion 
of oxygen atoms between O(1) and O(5) sites depends strongly upon the crystal phase 
of the sample and the nature of the strain impelled in the material by the acoustic wave, 
in particular, in the case of single-crystal samples. One would certainly like to see a 
comparison with measurements. A number of experimental studies do exist (Esquinazi 
et a1 1988, Izbizky et a1 1988, Cannelli et a1 1988, Mizubayashi et a1 1988, Duran et a1 
1988). However, there is still a lack of measurements on well defined single crystals. On 
the other hand, owing to lack of knowledge of material parameters, for instance, the 
elasticmodulus tensor, the parameters Y ,  Y ' ,  m, ninequation (6), and the pairinteraction 
energy w introduced in equation (9, we are still unable to produce concrete theoretical 
curves which can be checked by experiments. Therefore, we have provided in this 
article only formal results and regretfully can only wait to see what an evaluation and 
comparison with measurements shows as soon as possible in the future. 
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Appendix. Linear theory of relaxation processes (Cheng 1955) 

Consider a system whose equilibrium states are describable in terms of a collection of 
thermodynamic coordinates x,, a = 1,  . . ., n. We need to study the relaxation of the 
corresponding conjugate forces 

fa: = -aL?/ax, a =  1, .  . . , n  (All  
following variations in x,. A continuous change in x, can be considered as a series of 
discontinuous sudden jumps at successive time instants. Hence we need first to describe 
the relaxation of f, following a sudden jump in x, from xf to xf, = xf + Ax,. 

The response of the f,-values consists of two parts: an instantaneous change from 
ff tofSo: 

f - f f = C. M',p  AX^ (A21 

ff, = -(dQ/ax,),a=xr,. 043) 

P 

followed by a relaxation towards a final equilibrium state specified by (xf,, ffn): 

The latter variation in f, is determined by the relaxation equations 

TeP being the elements of the inverse relaxation time matrix. 

tainly be reached through an alternative quasi-static process; hence 
Starting from the initial equilibrium state (x:, f 10)) the final state (x i ,  ff,) can cer- 

f f ,  -f; = C. M S ~ : ~   AX^ (A5) 
P 

where 

M i p  = df,/dXP = -a2R/(dX, axp). 

Combining equations (A2) and (A5), we have 

Af = f - f f n  = 2 ( M i P  - M i P )  Ax, = 2 me@ AxP. 
P P 

Af (or f h) defines the initial value of Af, (or f,) at the beginning of the relaxation 
process: 

Afw = A f i  (or f a  = f i )  at t = 0. (A8) 
The problem now is reduced to finding the solution of equation (A4) under the initial 

condition (A8). A particular solution of equation (A4) is obviously of the form 
Af, = C, exp(-t/z). 

Substitution into equation (A4) yields 

2 (T,p + t-'d,P)Cp = 0. (A9) 
P 

The relaxation times are given by the roots of 
det/TmP + t - ' d u P J  = 0. 

There are, in general, n different relaxation times, t,, v = 1 ,  . . ., n. For each z,, the 
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corresponding coefficients CP which will, hereafter, be denoted as CPU, are fixed by 
equation (A9) to within an arbitrary common multiplier. The latter can be chosen, for 
instance, as Clu,  so that 

c,, = C,,D,, Diu = 1. (All)  

The general solution to equation (A4) is then 

The n integration constants C are in turn determined by the initial conditions (A8), 
(A7). 

A f t  = 2 C 1 ~ D e P  = map Axp. 
P P 

Multiplying by (D- l )u ,  and summing over a, it follows that 

c1, = z C,,6,, = z D ; h * / ?  Axg. 
P .P 

Therefore, the general solution to equation (A4) with the initial condition incorporated 

where in the second line we have used the relation (A5). 
It is now apparent that, for continuously time-varying values of x,(t) ,  

Multiplying both sides by D;:, summing over a, differentiating the resulting equation 
with respect to t and eliminating the integral term between (A13) and the derived 
equation, we have 

This is, in fact, equation (A13) in differential form. 

mated by 
In a number of important cases ( ITnP 1 < 1 T,, 1 when a # p), T,, can then be approxi- 

Tap = -tii6a/3 (A15) 

and equation (A14) reduces, in this case, to 

In our problem of internal friction arising from diffusion of oxygen atoms between 
0(1) and O(5) sites, we take as the thermodynamic coordinates the acoustic strain and 
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the occupation number N of O(1) sites. The corresponding conjugate forces are the 
stress and the relevant chemical potential. Since in static equilibrium CT' = 0, 

da /d t  + s; 'a = Mf, d&/dt  + M',N dN/dt + Z;'(M:~E + ML") 
(A171 

dp/dt + ~ T ' ( , u  - ,U') = MLE de/dt + MLN dN/dt + ~; ' (M&&E + &I&"). 

Since the O(1) and O(5) sites are always in chemical equilibrium, dp/dt  = 0, p = pl.  
Furthermore, AE will not cause instantaneous change in N, so that ( d N / d ~ ) ~  = 0, and 

implying that 
Ap = (dp /d~) /  AE + (ap /dN) l (dN/d~)IA~ = 0 

(ap/aE)/ = ML,  = 0. 

Lastly, pure mechanical relaxation in CT is a much faster process than the relaxation 
through atomic diffusion, so that z G t2  or z + 0 in equation (A17). With all the above 
considerations, 

CT= MiE& + MS," MLN dN/dt + ~; ' (ML&E + MNNN) = 0. (A18) 
In the case of a sinusoidal variation, 

E = .so exp(-iot) N = No exp(-iot). 

We have from the second equation of (AM) that 

N = [oz/(~ + w ~ T ~ ) ] ( - ~ - ~ / w ~ ) E  t = Z~MINN/M&N, 

Substitution into the first equation of (A18) yields 

0 = {ME& - [1/(1 f W 2 2 2 ) ] ( M i ~ M ~ E / M L ~ ) }  - i[Ut/(l + W 2 r 2 ) ] ( M & ~ M : N / M L N ) .  

The internal friction is then 

Q - I  = [l  - A/(1  + 0222)]-1[ilot/(l + w 2 z 2 ) ]  

In most cases Q-I 4 1, so that (A19) can be simplified into 

il = MENMN,/ME,MNN. (A19) 

e-' = [mz/ ( l  + 0 2 2 2 ) ] ( M & N M N ~ / M & ~ M N N ) '  (A201 

In equations (A19) and (A20), t - l  is the experimental resonance frequency. Since only 
M i p  appear explicitly in these equations, We have deleted the subscripts. The moduli 
M ,  are equilibrium thermodynamic quantities defined by equation (A6). 
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